Spatial variations in endothelial barrier function in disturbed flows in vitro.
نویسندگان
چکیده
Hindered barrier function has been implicated in the initiation and progression of atherosclerosis, a disease of focal nature associated with altered hemodynamics. In this study, endothelial permeability to macromolecules and endothelial electrical resistance were investigated in vitro in monolayers exposed to disturbed flow fields that model spatial variations in fluid shear stress found at arterial bifurcations. After 5 h of flow, areas of high shear stress gradients showed a 5.5-fold increase in transendothelial transport of dextran (molecular weight 70,000) compared with no-flow controls. Areas of undisturbed fully developed flow, within the same monolayer, showed a 2.9-fold increase. Monolayer electrical resistance decreased with exposure to flow. The resistance measured during flow and the rate of change in monolayer resistance after removal of flow were lowest in the vicinity of flow reattachment (highest shear stress gradients). These results demonstrate that endothelial barrier function and permeability to macromolecules are regulated by spatial variations in shear stress forces in vitro.
منابع مشابه
Spatial and temporal regulation of gap junction connexin43 in vascular endothelial cells exposed to controlled disturbed flows in vitro.
Hemodynamic regulation of the endothelial gap junction protein connexin43 (Cx43) was studied in a model of controlled disturbed flows in vitro. Cx43 mRNA, protein expression, and intercellular communication were mapped to spatial variations in fluid forces. Hemodynamic features of atherosclerotic lesion-prone regions of the vasculature (flow separation and recirculation) were created for period...
متن کاملP 61: MicroRNA as a Therapeutic Tool to Prevent Blood Brain Barrier Dysfunction in Neuroinflammation
Endothelial cells present in brain are unique and differ from other peripheral tissues in a number of ways, which ensures specific brain endothelial barrier properties. Endothelial dysfunction is the earliest event in the initiation of vascular damage caused by inflammation. Various microRNAs (miRNA) have been discovered in different cellular components of the blood bran barrier (BBB). miRNAs a...
متن کاملO 4: Kynurenine Impairs MbMEC Function in Vitro Through Arylhydrocarbon Receptor Activation
In the development of neuroinflammatory diseases, alterations of the blood brain barrier (BBB) represent key events. The integrity of the BBB is partially maintained by endothelia cells (ECs), since they actively limit the transmigration of immune cells. However, the factors that cause endothelial cells to develop an immune cell-permissive phenotype are poorly understood. In general, it has bee...
متن کاملP27: KCNK2 and Adhesion Molecules in an in-Vitro Blood Brain Barrier Model
Two-pore domain potassium channels, like KCNK2, are known to play an important role in inflammatory diseases such as multiple sclerosis (MS). Upregulation of cellular adhesion molecules in mouse brain microvascular endothelial cells (MBMECs) of Kcnk2-/- mice resulted in elevated leukocyte trafficking into the central nervous system under inflammatory conditions. The current project aims to gain...
متن کاملSimvastatin improves disturbed endothelial barrier function.
BACKGROUND Recent clinical trials have established that inhibitors of the enzyme 3-hydroxy-3-methylglutaryl coenzyme A reductase (statins) reduce the risk of acute coronary events. These effects of statins cannot be fully explained by their lipid-lowering potential. Improved endothelial function may contribute to the positive effects of statin treatment. METHODS AND RESULTS In the present stu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Heart and circulatory physiology
دوره 278 2 شماره
صفحات -
تاریخ انتشار 2000